Experience in Using SIMD and MIMD
Parallelism

for Computational Fluid Dynamics
Horst D. Simon'and Leonardo Dagum®
Applied Research Branch
Numerical Aerodynamic Simulation (NAS) Systems Division
NASA Ames Research Center, Mail Stop T045-1
Moftett Field, CA 94035

March 21, 1991

Abstract

One of the key objectives of the Applied Research Branch in the
Numerical Aerodynamic Simulation (NAS) Systems Division at NASA
Ames Research Center is the accelerated introduction of highly par-
allel machines into a full operational environment. In this report
we summarize some of the experiences with the parallel testbed ma-
chines at the NAS Applied Research Branch. We discuss the per-
formance results obtained from the implementation of two Compu-
tational Fluid Dynamics (CFD) applications, an unstructured grid
solver and a particle simulation, on the Connection Machine CM-2

and the Intel iPSC/860.

Keywords: parallel architectures, MIMD, SIMD, computational fluid dy-
namics.

AMS Subject Classification 76-08, 65W05, 65N99.

CR Subject Classification G.1.8, J.2, C.1.1, C.1.2.

!The author is an employee of Computer Sciences Corporation. This work is supported

through NASA Contract NAS 2-12961

1 Introduction

One of the key tasks of the Applied Research Branch in the Numerical Aero-
dynamic Simulation (NAS) Systems Division at NASA Ames Research Cen-
ter is the accelerated introduction of highly parallel and related key hardware
and software technologies into a full operational environment (see [1]). From
1988 - 1990 a testbed facility has been established for the development and
demonstration of highly parallel computer technologies. Currently a 32k
processor Connection Machine CM-2 and an 128 node Intel iPSC/860 are
operated at the NAS Applied Research Branch. This testbed facility is en-
visioned to consist of successive generations of increasingly powerful highly
parallel systems that are scalable to high performance capabilities beyond
that of conventional supercomputers.

It is recognized within the scientific computing community that the most
promising approach toward achieving very large improvements in comput-
ing performance is through the application of highly parallel architectures.
To meet the future processing needs of the aerospace research community,
the Applied Research Branch supports a research program aimed at achiev-
ing the best match of parallel processing technology to the most demanding
research applications. In the last two years a number of large scale computa-
tional fluid dynamics applications have been implemented on the two testbed
machines, and the potential of the parallel machines for production use has
been evaluated. Beyond that, a systematic performance evaluation effort has
been initiated (see [4]), and basic algorithm research has been continued.

In this report we will first give a brief description of the capabilities of the
parallel machines at NASA Ames. Then we will discuss some of the research
carried out in the implementation of Computational Fluid Dynamics (CFD)
applications on these parallel machines. We focus here on those applications
where we have more detailed knowledge because of our own involvement:
an explicit 2D Euler solver for unstructured grids, and a simulation based
on particle methods. Other applications based on structured grids will be
mentioned briefly, as well as the NAS effort in parallel benchmarking. In
a final section we offer some preliminary conclusions on the performance of
current parallel machines for CFD applications, as well as the potential of the
different architectures for production use in the future. Another summary of
some of the results from NASA Ames is given by D. Bailey in [3].

2 Parallel Machines at NASA Ames

2.1 Connection Machine

The Thinking Machines Connection Machine Model CM-2 is a massively
parallel SIMD computer consisting of many thousands of bit serial data pro-
cessors under the direction of a front end computer. The system at NASA
Ames consists of 32768 bit serial processors each with with 1 Mbit of memory
and operating at 7T MHz. The processors and memory are packaged as 16 in
a chip. Each chip also contains the routing circuitry which allows any pro-
cessor to send and receive messages from any other processor in the system.
In addition, there are 1024 64-bit Weitek floating point processors which are
fed from the bit serial processors through a special purpose “Sprint” chip.
There is one Sprint chip connecting every two CM chips to a Weitek. Fach
Weitek processor can execute an add and a multiply each clock cycle thus
performing at 14 MFLOPS and yielding a peak aggregate performance of 14
GFLOPS for the system.

The Connection Machine can be viewed two ways, either as an 11-dimensional
hypercube connecting the 2048 CM chips or a 10-dimensional hypercube con-
necting the 1024 processing elements. The first view is the “fieldwise” model
of the machine which has existed since its introduction. This view admits
to the existence of at least 32768 physical processors (when using the whole
machine) each storing data in fields within its local memory. The second is
the more recent “slicewise” model of the machine which admits to only 1024
processing elements (when using the whole machine) each storing data in
slices of 32 bits distributed across the 32 physical processors in the process-
ing element. Both models allow for “virtual processing”, where the resources
of a single processor or processing element may be divided to allow a greater
number of virtual processors.

Regardless of the machine model, the architecture allows interprocessor
communication to proceed in three manners. For very general communication
with no regular pattern, the router determines the destination of messages
at run time and directs the messages accordingly. This is referred to as gen-
eral router communication. For communication with an irregular but static
pattern, the message paths may be pre-compiled and the router will direct
messages according to the pre-compiled paths. This is referred to as compiled
communication and can be 5 times faster than general router communication.

Finally, for communication which is perfectly regular and involves only shifts
along grid axes, the system software optimizes the data layout by ensuring
strictly nearest neighbor communication and uses its own pre-compiled paths.
This is referred to as NEWS (for “NorthEastWestSouth”) communication.
Despite the name, NEWS communication is not restricted to 2-dimensional
grids, and up to 31-dimensional NEWS grids may be specified. NEWS com-
munication is the fastest.

The I/O subsystems connect to the data processors through an I1/O con-
troller. An I/O controller connects to 8192 processors through 256 1/0 lines.
There is one line for each chip but the controller can only connect to 256 lines
simultaneously and must treat its 8k processors as two banks of 4k each. Fach
I/O controller allows transfer rates of up to 40 MB per second. In addition
to an I/O controller there can be a frame buffer for color graphics output.
Because it is connected directly to the backplane rather than through the
I/O bus, the frame buffer can receive data from the CM processors at 256
MB per second. The system at NASA Ames has two frame buffers connected
to two high resolution color monitors and four I/O controllers connected to
a 20 GB DataVault mass storage system.

The Connection Machine’s processors are used only to store data. The
program instructions are stored on a front end computer which also carries
out any scalar computations. Instructions are sequenced from the front end
to the CM through one or more sequencers. FEach sequencer broadcasts
instructions to 8192 processors and can execute either independent of other
sequencers or combined in two or four. There are two front end computers at
NASA Ames, a Vax 8350 and a Sun 4/490, which currently support about 100
users. There are two sequencer interfaces on each computer which allow up to
four concurrent users. In addition, the system software supports the Network
Queue System (NQS) and time sharing through the CM Time Sharing System
(CMTSS).

The Connection Machine system was first installed at NASA Ames in
June of 1988. Since then the system has undergone a number of upgrades,
the most recent being completed in February of 1991. An assessment of the
system is given in [25]. Perhaps its greatest strength, from a user standpoint,
is the robust system software. This is of critical importance to NASA as it
moves its parallel machines into production mode.

2.2 Intel iPSC/860

The Intel iPSC/860 (also known as Touchstone Gamma System) is based
on the new 64 bit i860 microprocessor by Intel [14]. The i860 has over 1
million transistors and runs at 40 MHz. The theoretical peak speed is 80
MFLOPS in 32 bit floating point and 60 MFLOPS for 64 bit floating point
operations. The 1860 features 32 integer address registers, with 32 bits each,
and 16 floating point registers with 64 bits each (or 32 floating point registers
with 32 bits each). It also features an 8 kilobyte on-chip data cache and a 4
kilobyte instruction cache. There is a 128 bit data path between cache and
registers. There is a 64 bit data path between main memory and registers.

The 1860 has a number of advanced features to facilitate high execution
rates. First of all, a number of important operations, including floating
point add, multiply and fetch from main memory, are pipelined operations.
This means that they are segmented into three stages, and in most cases a
new operation can be initiated every 25 nanosecond clock period. Another
advanced feature is the fact that multiple instructions can be executed in
a single clock period. For example, a memory fetch, a floating add and a
floating multiply can all be initiated in a single clock period.

A single node of the Touchstone Gamma system consists of the 1860,
8 megabytes (MB) of dynamic random access memory, and hardware for
communication to other nodes. For every 16 nodes, there is also a unit
service module to facilitate access to the nodes for diagnostic purposes. The
Touchstone Gamma system at NASA Ames consists of 128 computational
nodes. The theoretical peak performance of this system is thus approximately
7.5 GFLOPS on 64 bit data.

The 128 nodes are arranged in a seven dimensional hypercube using the
direct connect routing module and the hypercube interconnect technology
of the iPSC/2. The point to point aggregate bandwidth of the interconnect
system, which is 2.8 MB/sec per channel, is the same as on the iPSC/2.
However the latency for the message passing is reduced from about 350 mi-
croseconds to about 90 microseconds. This reduction is mainly obtained
through the increased speed of the i860 on the Touchstone Gamma machine,
when compared to the Intel 386/387 on the iPSC/2. The improved latency
is thus mainly a product of faster execution of the message passing software
on the 1860.

Attached to the 128 computational nodes of the NASA Ames system are

ten 1/O nodes, each of which can store approximately 700 MB. The total
capacity of the 1/O system is thus about 7 GB. These 1/O nodes operate
concurrently for high throughput rates. The complete system is controlled
by a system resource module (SRM), which is based on an Intel 80386 pro-
cessor. This system handles compilation and linking of source programs, as
well as loading the executable code into the hypercube nodes and initiating
execution. At present the SRM is a serious bottleneck in the system, due to
its slowness in compiling and linking user codes. For example, the compi-
lation of a moderate-sized application program often requires 30 minutes or
more, even with no optimization options and no other users on the system.

During 1990 the iPSC/860 has been thoroughly investigated at NASA
Ames. A first set of benchmark numbers, and some CFD applications per-
formance numbers have been published in [2]. A more recent summary is
given by Barszcz in [5]. As documented in [5] from an overall systems as-
pect the main bottleneck has been the SRM, which is not able to handle the
demands of a moderately large user community (about 50 to 100 users) in a
production environment. Another important result of the investigations was
the outcome of a study by Lee [15]. Lee’s analysis of the i860 floating point
performance indicates that on typical CFD kernels the best performance to
be expected is in the 10 MFLOPS range. Finally we mention a performance
study of the I/O system by Lou [19], which measures the 1/O performance
of the CFS.

3 Structured Grid Applications

Structured grid codes, in particular multiblock structured grid codes, are one
of the main production CFD tools at NASA Ames. A number of different ef-
forts were directed toward the implementation of such capabilities on parallel
machines. One of the first CFD results on the CM-2 was the work by Levit
and Jespersen [17, 16], which was recently extended to three dimensions [18].
Their implementation is based on the successful ARC2D and ARC3D codes
developed by Pulliam [24]. Work by Barszcz and Chawla [6] is in progress to
implement F3D, a successor code to ARC3D, on the CM-2. On the iPSC/860
Weeratunga has implemented ARC2D (for early results see [2]), and work is
in progress to implement F3D. Weeratunga also has developed a pseudo CFD
application based on structured grids for the NAS Parallel Benchmark, which

is described in chapter 3 of [4]. We will not discuss these efforts here in more
detail and refer the interested reader to the references.

4 Unstructured Grid Applications

We discuss here work on an upwind finite-volume flow solver for the Euler
equations in two dimensions that is well suited for massively parallel imple-
mentation. The mathematical formulation of this flow solver was proposed
and implemented on the Cray-2 by Barth and Jespersen[7]. This solver has
been implemented on the CM-2 by Hammond and Barth [12], and on the
Intel iPSC/860 by Venkatakrishnan, Simon, and Barth [27].

The unstructured grid code developed by Barth is a vertex-based finite
volume scheme. The control volumes are non-overlapping polygons which
surround the vertices of the mesh, called the “dual” of the mesh. Associated
with each edge of the original mesh is a dual edge. Fluxes are computed
along each edge of the dual in an upwind fashion using an approximate
Riemann solver. Piecewise linear reconstruction is employed which yields
second order accuracy in smooth regions. A 4 stage Runge-Kutta scheme is
used to advance the solution in time. Fluxes, gradients and control volumes
are all constructed by looping over the edges of the original mesh. In the
Cray implementation, vectorization is achieved by coloring the edges of the
mesh.

It is assumed that a triangularization of the computational domain and
the corresponding mesh has been computed. We will not present any more
details here. A complete description of the algorithm can be found in [7, 12].

In both implementations the same test case has been used. The test case
used is an unstructured mesh with 15606 vertices, 45878 edges, 30269 faces, 4
bodies, and 949 boundary edges. The flow was computed at a Mach number
of .1 at 0 degrees angle of attack. The code for this test case runs at 150
Mflops on the NAS Cray-YMP at NASA Ames, and requires 0.39 seconds

per time step.

4.1 SIMD Implementation of Unstructured Solver

For the implementation on the CM-2 Hammond and Barth [12] used a novel
partitioning of the problem which minimizes the computation and commu-

nication costs on a massively parallel computer. In a mesh-vertex scheme,
solution variables are associated with each vertex of the mesh and flux com-
putation is performed at edges of the non-overlapping control volumes which
surround each vertex. In conventional parallel implementations this opera-
tion is partitioned to be performed edge-wise, i.e., each edge of the control
volume is assigned to one processor (edge-based). The resulting flux calcu-
lation contributes to two control volumes which share the particular edge.

In the partitioning used by Hammond and Barth, each vertex of the mesh
is assigned to one processor (vertex-based). Flux computations are identical
to the edge-based scheme but computed by processors associated with ver-
tices. Fach edge of the mesh joins a pair of vertices and is associated with
one edge of the control volume.

One can direct edge (7,7) to determine which vertex in the pair computes
the flux through the shared edge of the control volume, (k’,;"). When there
is a directed edge from 2 to j, then the processor holding vertex j sends
its conserved values to the processor holding vertex z, and the flux across
the common control volume edge is computed by processor ¢ and accumu-
lated locally. The flux through (&, ;') computed by the processor holding
vertex ¢ is sent to the processor holding vertex j to be accumulated nega-
tively. Hammond and Barth show that their vertex-based scheme requires
50% less communication and asymptotically identical amounts of computa-
tion as compared with the traditional edge-based approach.

Another important feature of the work by Hammond and Barth is the use
of fast communication. A feature of the communication within the flow solver
here is that the communication pattern, although irregular, remains static
throughout the duration of the computation. The SIMD implementation
takes advantage of this by using a mapping technique developed by Hammond
and Schreiber [13] and a “Communication Compiler” developed for the CM-2
by Dahl [11]. The former is a highly parallel graph mapping algorithm that
assigns vertices of the grid to processors in the computer such that the sum
of the distances that messages travel is minimized. The latter is a software
facility for scheduling irregular communications with a static pattern. The
user specifies a list of source locations and destinations for messages which
are then compiled into routing paths to be used at run time.

Hammond and Barth have incorporated the mapping algorithm and the
communication compiler into the flow solver running on the CM-2 and have
realized a factor of 30 reduction in communication time compared to using

naive or random assignments of vertices to processors and the router. Using
8K processors of the CM-2 and a VP ratio of 2, Hammond and Barth carried
out 100 time steps of the flow solver in about 71.62 seconds. This does not
include setup time.

4.2 MIMD Implementation of Unstructured Solver

Similar to the SIMD implementation one of the key issues is the partitioning
of the unstructured mesh. In order to partition the mesh Venkatakrishnan et
al. [27] employ a new algorithm for the graph partitioning problem, which has
been discussed recently by Simon [26], and which is based on the computation
of eigenvectors of the Laplacian matrix of a graph associated with the mesh.
Details on the theoretical foundations of this strategy can be found in [23].
Detailed investigations and comparisons to other strategies (cf. [26]) have
shown that the spectral partitioning produces subdomains with the shortest
boundary, and hence tends to minimize communication cost.

After the application of the partition algorithm of the previous section,
the whole finite volume grid with triangular cells is partitioned into P sub-
grids, each subgrid contains a number of triangular cells which form a single
connected region. Each subgrid is assigned to one processor. All connectivity
information is precomputed, using sparse matrix type data structures.

Neighboring subgrids communicate to each other only through their in-
terior boundary vertices which are shared by the processors containing the
neighboring subgrids. In the serial version of the scheme, field quantities
(mass, momentum and energy) are initialized and updated at each vertex
of the triangular grid using the conservation law for the Euler equations ap-
plied to the dual cells. Each processor performs the same calculations on
each subgrid as it would do on the whole grid in the case of a serial compu-
tation. The difference is that now each subgrid may contain both physical
boundary edges and interior boundary edges, which have resulted from grid
partitioning. Since a finite volume approach is adopted, the communication
at the inter-processor boundaries consists of summing the local contributions
to integrals such as volumes, fluxes, gradients etc.

The performance of the Intel iPSC/860 on the test problem is given in
Table 1.

Table 1: Performance of Unstructured Grid Code on the Intel
iPSC/860
Processors | secs/step | MFLOPS | efficiency(%)
2 7.58 7.7 83
4 3.82 15.3 83
8 2.01 29.1 79
16 1.11 52.7 71
32 0.61 95.9 65
64 0.33 177.3 60
128 0.21 278.6 47

5 Particle Methods

Particle methods of simulation are of interest primarily for high altitude,
low density flows. When a gas becomes sufficiently rarefied the constitutive
relations of the Navier-Stokes equations (i.e. the Stokes law for viscosity
and the Fourier law for heat conduction) no longer apply and either higher
order relations must be employed (e.g. the Burnett equations [20]), or the
continuum approach must be abandoned and the molecular nature of the gas
must be addressed explicitly. The latter approach leads to direct particle
simulation.

In direct particle simulation, a gas is described by a collection of simu-
lated molecules thus completely avoiding any need for differential equations
explicitly describing the flow. By accurately modelling the microscopic state
of the gas the macroscopic description is obtained through the appropriate
integration. The primary disadvantage of this approach is that the computa-
tional cost is relatively large. Therefore, although the molecular description
of a gas is accurate at all densities, a direct particle simulation is competitive
only for low densities where accurate continuum descriptions are difficult to
make.

For a small discrete time step, the molecular motion and collision terms
of the Boltzmann equation may be decoupled. This allows the simulated
particle flow to be considered in terms of two consecutive but distinct events
in one time step, specifically there is a collisionless motion of all particles
followed by a motionless collision of those pairs of particles which have been
identified as colliding partners. The collisionless motion of particles is strictly

deterministic and reversible. However, the collision of particles is treated on
a probabilistic basis. The particles move through a grid of cells which serves
to define the geometry, to identify colliding partners, and to sample the
macroscopic quantities used to generate a solution.

The state of the system is updated on a per time step basis. A single
time step is comprised of five events:

1. Collisionless motion of particles.

2. Enforcement of boundary conditions.

3. Pairing of collision partners.

4. Collision of selected collision partners.

5. Sampling for macroscopic flow quantities.

Detailed description of these algorithms may be found in [21] and [8]

5.1 SIMD Implementation of Particle Simulation

Particle simulation is distinct from other CFD applications in that there are
two levels of parallel granularity in the method. There is a coarse level con-
sisting of cells in the simulation (which are approximately equivalent to grid
points in a continuum approach) and there is a fine level consisting of indi-
vidual particles. At the time of the CM-2 implementation there existed only
the fieldwise model of the machine, and it was natural for Dagum [8] to de-
compose the problem at the finest level of granularity. In this decomposition,
the data for each particle is stored in an individual virtual processor in the
machine. A separate set of virtual processors (or VP set) stores the geome-
try and yet another set of virtual processors stores the sampled macroscopic
quantities.

This decomposition is conceptually pleasing however in practice the rela-
tive slowness of the Connection Machine router can prove to be a bottleneck
in the application. Dagum [8] introduces several novel algorithms to mini-
mize the amount of communication and improve the overall performance in
such a decomposition. In particular, steps 2 and 3 of the particle simulation
algorithm require a somewhat less than straightforward approach.

10

The enforcement of boundary conditions requires particles which are
about to interact with a boundary to get the appropriate boundary infor-
mation from the VP set storing the geometry data. Since the number of
particles undergoing boundary interaction is relatively small, a master/slave
algorithm is used to minimize both communication and computation. In this
algorithm, the master is the VP set storing the particle data. The master
creates a slave VP set large enough to accommodate all the particles which
must undergo boundary interactions. Since the slave is much smaller than
the master, instructions on the slave VP set execute much faster. This more
than makes up for the time that the slave requires to get the geometry in-
formation and to both get and return the particle information.

The pairing of collision partners requires sorting the particle data such
that particles occupying the same cell are represented by neighboring virtual
processors in the one dimensional NEWS grid storing this data. Dagum [9]
describes different sorting algorithms suitable for this purpose. The fastest
of these makes use of the realization that the particle data moves through
the CM processors in a manner analogous to the motion of the particles in
the simulation. The mechanism for disorder is the motion of particles, and
the extent of motion of particles, over a single time step, is small. This can
be used to tremendously reduce the amount of communication necessary to
re-order the particles.

These algorithms have been implemented in a two-dimensional particle
simulation running on the CM-2. At the time of implementation, the CM-2
at NASA Ames had only 64k bits of memory per processor which was in-
sufficient to warrant a three-dimensional implementation. Furthermore, the
slicewise model of the machine did not exist and the machine had the slower
32-bit Weitek’s which did not carry out any integer arithmetic. Nonetheless,
with this smaller amount of memory and fieldwise implementation, the code
was capable of simulating over 2.0 x 10° particles in a grid with 6.0 x 10*
at a rate of 2.0usec/particle/timestep using all 32k processors (see [8]). By
comparison, a fully vectorized equivalent simulation on a single processor
of the Cray YMP runs at 1.0usec/particle/timestep and 86 MFLOPS as
measured by the Cray hardware performance monitor. (Note that a sig-
nificant fraction of a particle simulation involves integer arithmetic and the
MFLOP measure is not completely indicative of the amount of computation
involved). Currently, work is being carried out to extend the simulation to
three dimensions using a parallel decomposition which takes full advantage

11

of the slicewise model of the machine.

5.2 MIMD Implementation of Particle Simulation

The MIMD implementation differs from the SIMD implementation not so
much because of the difference in programming models but because of the
difference in granularity between the machine models. Whereas the CM-2
has 32768 processors, the iPSC/860 has only 128. Therefore on the iPSC/860
it is natural to apply a spatial domain decomposition rather than the data
object decomposition used on the CM-2.

In McDonald’s [22] implementation, the spatial domain of the simula-
tion is divided into a number of sub-domains or regions equal to the desired
number of node processes. Communication between processes occurs as a
particle passes from one region to another and is carried out asynchronously,
thus allowing overlapping communication and computation. Particles cross-
ing region “seams” are treated simply as an additional type of boundary
condition. Each simulated region of space is surrounded by a shell of extra
cells that, when entered by a particle, directs that particle to the neighboring
region. This allows the representation of simulated space (i.e. the geometry
definition) to be distributed along with the particles. The aim is to avoid
maintaining a representation of all simulated space which, if stored on a single
processor, would quickly become a serious bottleneck for large simulations,
and if replicated would simply be too wasteful of memory.

Within each region the sequential or vectorized particle simulation is ap-
plied. This decomposition allows for great flexibility in the physical models
that are implemented since node processes are asynchronous and largely in-
dependent of each other. Recall that communication between processes is
required only when particles cross region seams. This is very fortuitous since
the particle motion is straightforward and fully agreed upon. The important
area of research has to do with the modelling of particles, and since this part
of the problem does not directly affect communication, particle models can
evolve without requiring great algorithmic changes.

McDonald’s implementation is fully three-dimensional. The performance
of the code on a 3D heat bath is given in Table 2.

At the present time the domain decomposition is static, however work is
being carried out to allow dynamic domain decomposition thus permitting
a good load balance to exist throughout a calculation. The geometry and

12

Table 2: Performance of Particle Simulation on the Intel iPSC/860

Processors | us/prt/step | MFLOPS | efficiency(%)
2 24.4 3.5 97

4 12.5 6.9 95

8 6.35 13.5 93

16 3.25 26.5 91

32 1.63 52.8 91

64 0.85 101 87

128 0.42 215 88

spatial decomposition of the heat bath simulation exaggerated the area to
volume ratio of the regions in order to more closely approximate the com-
munication expected in a real application with dynamic load balancing. The
most promising feature of these results is the linear speed up obtained, in-
dicating that the performance of the code should continue to increase with
increasing numbers of processors.

6 Conclusions

On the unstructured grid code the performance figures are summarized in

Table 3, where all MFLOPS numbers are Cray Y-MP equivalent numbers.

Table 3: Performance Comparison of Unstructured Grid Code

Machine Processors | secs/step | MFLOPS
Cray Y-MP 1 0.39 150.0
Intel iPSC/860 64 0.33 177.3

128 0.21 278.6
CM-2 (32 bit) 8192 0.72 81.3

For the particle methods the corresponding summary of performance fig-
ures can be found in Table 4. The figures in Table 4 should be interpreted
very carefully. The simulations run on the different machines were compara-

ble, but not identical. The MFLOPS are Cray Y-MP equivalent MFLOPS

ratings based on the hardware performance monitor.

13

Table 4: Performance Comparison of Particle Simulation Code

Machine Processors | usecs/particle/step | MFLOPS
Cray 2 1 2.0 43
Cray Y-MP 1 1.0 86
Intel iPSC/860 128 0.4 215
CM-2 (32 bit) 32768 2.0 43

The results in Tables 3 and 4 demonstrate a number of points. Both un-
structured grid computations and the particle simulations are applications
which a priori are not immediately parallelized, and for which both on SIMD
and MIMD machines considerable effort must be expended in order to ob-
tain an efficient implementation. It has been demonstrated by the results
obtained at NASA Ames that this can be done, and that supercomputer
level performance can be obtained on current generation parallel machines.
Furthermore the particle simulation code on the CM-2 is a production code
currently used to obtain production results (see [10]). The iPSC/860 imple-
mentation should be in production use by the end of 1991.

Our results also demonstrate another feature which has been found across
a number of applications at NASA Ames: massively parallel machines quite
often obtain only a fraction of their peak performance on realistic applica-
tions. In the applications considered here, the requirement for unstructured,
general communication has been the primary impediment in obtaining the
peak realizable performance from these machines. Neither the CM-2 nor
the the iPSC/860 deliver the communication bandwidth necessary for these
CFD applications. This situation is even worse for implicit algorithms (see
e.g. [6, 2]). Experience has shown that CFD applications require on the
order of one memory reference per floating point operation and a balanced
system should have a memory bandwidth comparable to its floating point
performance. In these terms, current parallel systems deliver only a fraction
of the required bandwidth.

Acknowledgement. We wish to thank our colleagues with the NAS Ap-
plied Research Branch, whose work has been discussed here: D. Bailey, E.
Barszcz, R. Fatoohi, T. Lasinski, C. Levit, V. Venkatakrishnan, and S. Weer-
atunga. We also thank T. Barth, D. Jespersen, J. McDonald, (all NASA
Ames) and P. Fredericksen, S. Hammond, and R. Schreiber at RIACS for

14

their contributions to this summary report.

References

(1]

2]

Numerical Aerodynamic Simulation Program Plan. NAS Systems Divi-

sion, NASA Ames Research Center, October 1988.

D. Bailey, E. Barszcz, R. Fatoohi, H. Simon, and S. Weeratunga. Perfor-
mance results on the intel touchstone gamma prototype. In David W.
Walker and Quentin F. Stout, editors, Proceedings of the Fifth Dis-
tributed Memory Computing Conference, pages 1236 — 1246, IEEE, Com-
puter Society Press, Los Alamitos, California, 1990.

D. H. Bailey. Ezperience with Parallel Computers at NASA Ames. Tech-
nical Report RNR-91-07, NASA Ames Research Center, Moffett Field,
CA 94035, February 1991.

D. H. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Paral-
lel Benchmarks. Technical Report RNR-91-02, NASA Ames Research
Center, Moffett Field, CA 94035, January 1991.

E. Barszcz. One Year With an iPSC/860. Technical Report RNR-91-01,
NASA Ames Research Center, Moffett Field, CA 94035, January 1991.

E. Barszcz and K. Chawla. F3D On the CM-2. In T. Pulliam, ed-
itor, Compendium of Abstracts, NASA CFD Conference, March 1991,

pages 56 — 57, NASA Office of Aeronautics Exploration and Technology,
March 1991.

T.J. Barth and D.C. Jespersen. The design and application of upwind
schemes on unstructured meshes. In Proceedings, 27th Aerospace Sci-

ences Meeting, January 1989. Paper ATAA 89-0366.

L. Dagum. On the Suitability of the Connection Machine for Direct Par-
ticle Stmulation. Technical Report 90.26, RIACS, NASA Ames Research
Center, Moffett Field, CA 94035, June 1990.

15

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

L. Dagum. Sorting for particle flow simulation on the connection ma-
chine. In Horst D. Simon, editor, Research Directions in Parallel CFD,
MIT Press, Cambridge(to appear), 1991.

L. Dagum. Lip Leakage Flow Simulation for the Gravity Probe B Gas
Spinup Using PSiCM. Technical Report RNR-91-10, NASA Ames Re-
search Center, Moffett Field, CA 94035, March 1991.

E. Denning Dahl. Mapping and compiled communication on the con-
nection machine system. In David W. Walker and Quentin F. Stout,
editors, Proceedings of the Fifth Distributed Memory Computing Con-
ference, pages 756 — 766, IEEE Computer Society Press, Los Alamitos,
California, 1990.

S. Hammond and T.J. Barth. On a massively parallel Euler solver for
unstructured grids. In Horst D. Simon, editor, Research Directions in

Parallel CFD, MIT Press, Cambridge(to appear), 1991.

S. Hammond and R. Schreiber. Mapping Unstructured Grid Problems to
the Connection Machine. Technical Report 90.22, RIACS, NASA Ames
Research Center, Moffett Field, CA 94035, October 1990.

Intel Corporation. 860 64-Bit Microprocessor Programmer’s Reference

Manual. Santa Clara, California, 1990.

K. Lee. On the Floating Point Performance of the i860 Microprocessor.
Technical Report RNR-90-019, NASA Ames Research Center, Moffett
Field, CA 94035, 1990.

C. Levit and D. Jespersen. A computational fluid dynamics algorithm
on a massively parallel computer. Int. J. Supercomputer Appl., 3(4):9 —
27, 1989.

C. Levit and D. Jespersen. Fxplicit and Implicit Solution of the Navier-
Stokes Fquations on a Massively Parallel Computer. Technical Report,
NASA Ames Research Center, Moffett Field, CA, 1988.

C. Levit and D. Jespersen. Numerical Stmulation of a Flow Past A
Tapered Cylinder. Technical Report RNR-90-20, NASA Ames Research
Center, Moffett Field, CA 94035, October 1990.

16

[19]

[20]

[21]

[22]

23]

[24]

Zhong C. Lou. A Summary of CFS 1/0 Tests. Technical Report RNR-
90-20, NASA Ames Research Center, Moffett Field, CA 94035, October
1990.

F.E. Lumpkin. Development and Evaluation of Continuum Models for
Translational-Rotational Nonequilibrium. PhD thesis, Stanford Univer-
sity, Dept. of Aeronautics and Astronautics, Stanford CA 94305, April
1990.

J. D. McDonald. A Computationally Efficient Particle Stmulation
Method Suited to Vector Computer Architectures. PhD thesis, Stanford
University, Dept. of Aeronautics and Astronautics, Stanford CA 94305,
December 1989.

J. D. McDonald. Particle Simulation in a Multiprocessor Environment.
Technical Report RNR-91-02, NASA Ames Research Center, Moffett
Field, CA 94035, January 1991.

A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Mat. Anal. Appl., 11(3):430 — 452,
1990.

T. H. Pulliam. Efficient solution methods for the Navier-Stokes equa-
tions. 1986. Lecture Notes for The Von Karman Institute for Fluid
Dynamics Lecture Series, Jan. 20 - 24.

R. Schreiber. An Assessment of the Connection Machine. Technical
Report 90.40, RIACS, NASA Ames Research Center, Moffett Field, CA
94035, June 1990.

H. D. Simon. Partitioning of Unstructured Problems for Parallel Pro-
cesssing. Technical Report RNR-91-08, NASA Ames Research Center,
Moffett Field, CA 94035, February 1991. (to appear in Computing Sys-
tems in Engineering).

V. Venkatakrishnan, H. Simon, and T. Barth. A MIMD Implemen-
tation of a Parallel Euler Solver for Unstructured Grids. Technical
Report RNR-91-xx, NASA Ames Research Center, Moffett Field, CA
94035, 1991. (in preparation).

17

